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Abstract The stratosphere has been identified as an important source of predictability for a range of
processes on subseasonal to seasonal (S2S) time scales. Knowledge about S2S predictability within the
stratosphere is however still limited. This study evaluates to what extent predictability in the extratropical
stratosphere exists in hindcasts of operational prediction systems in the S2S database. The stratosphere is
found to exhibit extended predictability as compared to the troposphere. Prediction systems with higher
stratospheric skill tend to also exhibit higher skill in the troposphere. The analysis also includes an
assessment of the predictability for stratospheric events, including early and midwinter sudden
stratospheric warming events, strong vortex events, and extreme heat flux events for the Northern
Hemisphere and final warming events for both hemispheres. Strong vortex events and final warming
events exhibit higher levels of predictability as compared to sudden stratospheric warming events. In
general, skill is limited to the deterministic range of 1 to 2 weeks. High-top prediction systems overall
exhibit higher stratospheric prediction skill as compared to their low-top counterparts, pointing to the
important role of stratospheric representation in S2S prediction models.

1. Introduction

The winter stratosphere is dominated by strong westerly circumpolar winds in the extratropics of both
hemispheres, which exhibit maximum variability from December-March in the Northern Hemisphere (NH)
and from October-December in the Southern Hemisphere (SH) (Plumb, 1989; Thompson & Wallace, 2000).
This variability, which is larger in the NH, is linked to dynamical extreme events. The most prominent
events are so-called major sudden stratospheric warming (SSW) events. These occur in the polar NH on
average every second winter (Butler et al., 2017; Charlton & Polvani, 2007) and are associated with a
disruption of the polar vortex, reversing the climatological westerly winds to easterlies in midwinter. Tem-
peratures at a height of 30 km can increase by around 50 °C within a few days during these events, and the
troposphere tends to respond with an anomalously persistent negative signature of the Northern Annular
Mode and the North Atlantic Oscillation (NAO) (Baldwin & Dunkerton, 2001; Charlton-Perez et al., 2018;
Domeisen, 2019; Karpechko et al., 2017). In the SH, only one major SSW event has been observed to date,
in September 2002 (e.g. Charlton et al., 2005; Newman & Nash, 2005; Taguchi, 2014). In addition, minor
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stratospheric warming events in the SH can also significantly impact the Southern Annular Mode (SAM)
and the associated surface climate (e.g. Lim et al., 2018).

In the NH, the polar vortex can also significantly weaken early in the season. Early winter weak vortex
events occur before wind speeds peak in the stratosphere, are strongly influenced by the transient develop-
ment of the vortex into winter, and can precondition the vortex for midwinter variability for both the NH
(Albers & Birner, 2014; Ayarzagiiena et al., 2011; Limpasuvan et al., 2004) and SH (Ivy et al., 2017). Early
vortex weakening events can potentially influence early winter surface climate, for example, in NH winter
2016/2017 (Tyrrell et al., 2019), despite the fact that they generally do not meet the criteria for major mid-
winter SSWs. These events can exhibit zonal wind speeds of less than 10 ms™! for more than a week at 60°N
and 10 hPa and can exhibit easterly zonal mean winds at latitudes poleward of 60°N, which can lead to
similar surface impacts as major SSWs (Butler & Gerber, 2018).

Occasionally, the vortex strengthens significantly in so-called strong polar vortex events
(e.g. Limpasuvan et al., 2005) in boreal winter or austral spring. Strong polar vortex events occur when the
winter polar vortex intensifies significantly above climatology, and these events generally have opposite
impacts to midwinter SSWs on surface weather (i.e., in the NH [SH], the surface influence projects onto the
positive phase of the NAO [SAM]). Strong vortex events have been found to increase surface predictability
(Tripathi, Charlton-Perez, et al., 2015).

In addition, shorter-lived events, so-called wave reflection and negative heat flux events can also impact the
entire atmospheric column and often precede strong vortex events (Dunn-Sigouin & Shaw, 2015; Perlwitz &
Harnik, 2003). Extreme stratospheric wave 1 negative heat flux events are coupled with significant changes
in the tropospheric circulation, in particular, they are followed by a poleward shift of the North Atlantic jet
consistent with a positive phase of the NAO (Dunn-Sigouin & Shaw, 2015; Lubis et al., 2016; Shaw et al., 2014;
Shaw & Perlwitz, 2013). The tropospheric response following negative heat flux events can be reproduced
in dry dynamical core experiments if the stratosphere is nudged to the observed event evolution and the
troposphere is freely evolving (Dunn-Sigouin & Shaw, 2018).

At the end of winter, the polar vortex collapses to easterlies in a final stratospheric warming event in spring
(Black et al., 2006; Black & McDaniel, 2007). While final warmings are typically induced by the radia-
tive relaxation of the equator-to-pole temperature gradient as sunlight returns to the pole, they can also
be dynamically induced by wave breaking in a manner similar to midwinter SSWs (Hardiman et al., 2011;
Hu, Ren, & Xu, 2014; Hu, Ren, Yu, & Xu, 2014). Final warmings can exhibit different surface impacts than
midwinter SSWs in the NH (Ayarzagiiena & Serrano, 2009; Hardiman et al., 2011). In the SH, the downward
impact of the final warming tends to manifest in the tropospheric SAM (e.g., Gerber et al., 2010; Lim et al.,
2018; Seviour et al., 2014; Son et al., 2013; Thompson & Solomon, 2005), which drives variations in surface
climate throughout the SH (Bandoro et al., 2014; Lim et al., 2018). This indicates that a skillful prediction of
the SH stratospheric polar vortex in spring can provide an early warning for the polarity of the surface SAM
and associated SH climate in spring to summer, beyond the SAM's typical 2-week decorrelation time scale
(Marshall et al., 2011).

The above described extreme events in the stratosphere remain difficult to predict deterministically despite
significant progress in stratospheric representation, including higher model lids and increased stratospheric
resolution (e.g. Butler et al., 2016). In idealized dynamical core models in ensemble mode, SSWs can on
average be deterministically predicted 10 days in advance (Gerber et al., 2009). For more complex prediction
systems, these predictive lead times are similar (Tripathi et al., 2016; Tripathi, Baldwin, et al., 2015) but can
vary widely between different SSW events (Karpechko, 2018; Marshall & Scaife, 2010; Noguchi et al., 2016;
Taguchi, 2016; Taguchi, 2018).

Given the influence of the stratosphere on surface weather during NH winter and SH spring and the
implied added predictability on subseasonal to seasonal (S2S) time scales (e.g. Baldwin et al., 2003; Scaife
et al., 2016), it is crucial to understand the dynamics and predictability of the stratosphere itself. Due to
the different mechanisms for the above described events, there are reasons to expect different time scales
of vortex evolution—and hence different predictability—for example, during weak versus strong vortex
events (Limpasuvan et al., 2004; Limpasuvan et al., 2005) in addition to the different surface impacts pre-
viously mentioned. Only recently, via the World Climate Research Program and World Weather Research
Program S2S project, an intercomparison of a large number of state-of-the-art operational S2S prediction
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Table 1
Details of the Prediction Systems Considered in This Study, Based on the Data Available at the Time of Analysis
Prediction system Initialization Hindcast period Ensemble size
BoM ERA-interim/ALL 1981-2013 33
CMA NCEP-NCAR R1 1994-2014
ECCC ERA-interim 1995-2014
ECMWF* ERA-interim 1997-2016 11
IMAX* JRA-55 1981-2010 5
CNRM-Meteo* ERA-interim 1993-2014 15
CNR-ISAC ERA-interim 1981-2010 1
NCEP* CFSR 1999-2010 4
UKMO* ERA-interim 1993-2015 2-7

wy

Note. “x” indicates high-top models throughout this study, here referring to a top model level above 0.1 hPa and a
stratospheric resolution with several levels above 1 hPa. ALI refers to the BoM data assimilation scheme. Differing
numbers of ensemble members for UKMO were used in this study, depending on the members available at the time of
data acquisition for each section.

systems with stratospheric output has been made possible. Here, we evaluate the predictability of the
extratropical stratosphere of both hemispheres using this database, while the second part of this study
(Domeisen et al., 2019, hereafter Part 2) investigates the influence of the stratosphere on the predictability of
surface climate with a focus on the NH. Section 2 describes the S2S database and our methodology, includ-
ing the definition of stratospheric extreme events (section 2.3). Section 3 evaluates the predictability of the
winter stratosphere relative to the troposphere, while section 4 considers the predictability of stratospheric
extreme events. Section 5 provides a summary and discussion of the results.

2. Methodology

2.1. Data

The focus of this study will be the analysis of hindcasts from the S2S forecast project database (Vitart et al.,
2017). The database is a repository of forecast and hindcast data from 11 different operational subseasonal
forecast systems. The focus of this study is on the hindcast data, since it spans a broad range of different
stratospheric states, at the expense of the large ensemble sizes characteristic of the real-time forecasts. Nine
of the 11 systems are analyzed in detail in this study. Two models (KMA and HMCR) had to be excluded
due to data issues. Table 1 lists the model systems included in our analysis along with specific details of
each system and its output availability. The hindcast period differs substantially between different ensemble
prediction systems due to their operational strategy. For the majority of the analysis in this study, the period
1996-2010, over which hindcasts are available for most prediction systems, is used. Not all analyses in this
study are able to employ all prediction systems, for example, due to the differing length of the hindcasts or
the different time periods for which hindcasts are available; hence, different sections may use a more limited
set of models or a different hindcast period depending on the specific requirements of a particular analysis.
An effort has been made to include as many models as possible into every analysis. Exceptions to the data
listed in Table 1 will be noted.

There are several ways in which the design of the prediction systems is important to consider when thinking
about their ability to forecast the stratosphere. Of primary importance are the vertical resolution of the atmo-
spheric model component and the height of the model top level. Figure 1 shows the spacing of model levels
for the nine systems considered. The prediction systems are divided into two broad groups, that is, high-top
models (as defined in Table 1), which fully represent the stratosphere (ECMWF, UKMO, JMA, NCEP, and
CNRM-Meteo), and low-top models (ECCC, CMA, CNR-ISAC, and BoM). Note that the prediction sys-
tems are initialized with different reanalysis products in the atmosphere, that is, JRA-55 (Kobayashi et al.,
2015), ERA-Interim (Dee et al., 2011), NCEP-NCAR R1 (Kalnay et al., 1998), and CFSR (Saha et al., 2010)
as indicated in Table 1. This may lead to differences in the models’ performance in the stratosphere. The
detailed performance of different reanalysis products in the stratosphere has been reviewed by the SPARC
Reanalysis Intercomparison Project (e.g. Long et al., 2017). In this study, we verify all hindcasts against
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Figure 1. Schematic representation of model vertical resolution for all S2S prediction systems used in this study. Each
block represents the pressure range indicated on the y axis. The number of model levels in each range is shown
numerically. The shading in each box is proportional to the average level spacing (in kilometers) in that region of the
atmosphere. The red number at the top of each bar shows the total number of levels in each model. The dashed line
indicates the separation between high- and low-top models (see Table 1).

ERA-Interim reanalysis. While this could be biased against systems initialized with a different reanaly-
sis, in most cases, sampling variability will be much larger than variability between reanalysis products
(Gerber & Martineau, 2018).

2.2. Skill Measures
In this study, skill is evaluated according to a range of measures that are commonly used in the literature.
One common metric is the correlation coefficient r given by

T
r= Z[:l Xmod - Cmod)(Xobs - Cobs)
T T
\/2{:1 (Xmod - Cmod)2 : 2::1 (Xobs - Cobs)2

where X is a time-dependent variable and the subscripts mod and obs denote the model ensemble mean and
the reanalysis data set, respectively. C,, .4 is the lead time-dependent model climatology, over the same period
of time as the observed climatology C,,. T is the number of events or time steps for which r is evaluated.

, @

To evaluate the spatial skill of the anomaly pattern, we use the anomaly correlation coefficient (e.g., Table 2
and Figures 2 and 3):

T S
21:1 ZS:I w- (Xmod - Cmod)(Xobs - Cobs)

S S ’
\/2?:1 2321 w- (Xmod - Cmod)2 : Zthl 2521 w- (Xobs - Cobs)2

ACC = )

Spatial weighting by the cosine of latitude w and spatial averaging over S grid spaces is applied as an addi-
tional summation over the covariance and variance terms separately. This formulation of the ACC allows an
a posteriori removal of systematic errors in the model hindcasts. In this study, the ACC and r are computed
for the ensemble mean for each prediction system as a function of forecast lead time. The multimodel mean
is the averaged correlation from all prediction systems. A skill level of 0.6 is used as a threshold to compare
the different models, consistent with other studies of seasonal and subseasonal predictability.

A further measure that has recently been introduced by Eade et al. (2014) is the ratio of predictable compo-
nents (RPC), a property of ensemble hindcasts comparing the size of a predicted signal to that expected from

their correlation coefficient:
r-o
RPC = —™, 3)

Omod

with r as defined in equation (1). 0,4 is the standard deviation of the model ensemble mean, and o, is
the total variance in the ensemble, where o, uses all ensemble members and start dates for each lead time.
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Thereby, the RPC is the ratio of the correlation coefficient multiplied by the standard deviation across all
years and ensemble members (the variability we would expect the ensemble mean to contain given the cor-
relation) to the standard deviation of the year-to-year variations in the ensemble mean (the variability we
actually obtain from the system). RPC = 1 indicates that a forecast system perfectly reflects the predictabil-
ity of the observed system. Eade et al. (2014) showed that we expect an ensemble prediction system that is
overconfident to have RPC < 1 and one that is underconfident to have RPC > 1. For RPC > 1, the system
has less ensemble mean amplitude than expected by the correlation of the ensemble mean with the obser-
vations (i.e., the ACC). This is found for many prediction systems on seasonal time scales and likely reveals
deficiencies in the model (e.g., O'Reilly et al., 2018).

2.3. Classification of Stratospheric Events
We investigate the predictability of extreme events in the polar stratosphere in section 4. Here we briefly
describe how we classify these stratospheric events.

Early winter weak vortex event. Weak (i.e., less than —1¢ from the ERA-interim daily climatological mean)
zonal mean zonal winds at 60°N and 10 hPa that persist for at least a week beginning in the month of
November. There are four of these events in the 1996-2010 period in ERA-interim.

Strong polar vortex event. Strong polar vortex events are defined as periods when zonal mean zonal winds
at 60°N and 10 hPa exceed a threshold value. Following Tripathi, Baldwin, et al. (2015), we use the 80th
percentile of ERA-Interim November to March winds over the 1980-2012 period, which is 41.2 m/s. We
define the start of the event as the date when the winds exceed the threshold for the first time. This condition
is set to ensure that the forecasts are not initiated during a strong polar vortex. An event must last for at least
2 days, and events must be separated by at least 30 days. During the period 1996-2010, there are 12 strong
polar vortex events.

Midwinter SSW event. Though there are several possible definitions for a SSW event (Butler et al., 2015), here
we base our analysis on zonal mean zonal wind reversals at 60°N and 10 hPa (Charlton & Polvani, 2007), as
listed in Table 2 of Butler et al. (2017) for ERA-Interim (December-February [DJF] events only). During the
1996-2010 period, there are 11 midwinter SSW events.

Negative heat flux events. Negative heat flux events are defined by extreme values of the daily zonal mean
wave 1 meridional heat flux (WT’,_,, where k denotes the zonal wave number) computed from daily
mean values of the meridional wind v and temperature T and averaged from 60-90°N at 50 hPa during
January-March, as in Dunn-Sigouin and Shaw (2015). Negative events are identified when the 5-day run-
ning mean high latitude heat flux drops below the fifth percentile of the climatological distribution from
reanalysis (—13.5 K ms™!). The central date of the events is defined at the day of minimum high latitude
heat flux, and events must be separated by a minimum of 15 days. Ten events are identified from 1996-2010
(Table 1 in Dunn-Sigouin and Shaw, 2015).

Final stratospheric warming events. The final warming is defined as the last date prior to 30 June (31
December) of each year when the ERA-Interim daily mean zonal mean zonal winds at 10 hPa and 60°
latitude in the NH (SH) turn easterly and do not return to westerly for more than 10 consecutive days
(Butler & Gerber, 2018). The final warming typically occurs around mid-April in the NH and mid-November
in the SH at the 10 hPa level. This same definition is used for model runs initialized between 1 February
(1 September for the SH) and the date of the observed final warming. Note that if the zonal wind reverses
less than 10 days from the end of the forecast, it is counted as a predicted final warming, although the crite-
rion of not returning to westerlies cannot be evaluated in this case. Because there is a final warming every
spring, there are 14 observed events from 1997-2010. The climatological mean final warming date from
ERA-Interim (over the longer 1981-2016 period) is 15 April in the NH and 20 November in the SH.

3. Evaluation of the Baseline Prediction Skill in the Stratosphere and the
Troposphere
The main purpose of this study is to investigate how well the prediction systems in the database simulate the

predictability in the stratosphere and troposphere on subseasonal time scales. As a first step, we characterize
the baseline skill present in the prediction systems in the stratosphere and troposphere.
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The stratosphere and the troposphere have different characteristics when it comes to persistence and pre-
dictability. Large-scale variability in the stratosphere has significantly longer decorrelation time scales than
the troposphere (Baldwin et al., 2003; Gerber et al., 2008, 2010; Simpson et al., 2011). The extent to which
the decorrelation time scale is determined primarily by radiative time scales or a combination of radiative
and dynamical processes is uncertain (Charlton-Perez & O'Neill, 2010; Hitchcock et al., 2013). The longer
decorrelation time scales in the stratosphere result in enhanced prediction skill at subseasonal time scales
in the stratosphere compared to the skill in the troposphere (Zhang et al., 2013).

Table 2 and Figure 2 show the prediction skill (equation (2)) at 50 and 500 hPa (defined here by the ACC,
see equation (2)), characterizing the model predictability in the middle stratosphere and the middle tropo-
sphere, respectively. The ACC decreases more slowly in the stratosphere than in the troposphere. All the
prediction systems, even those with a poor stratospheric representation, are able to capture the enhanced
prediction skill in the stratosphere compared to the troposphere. The predictability limit is defined as the
day when the ACC drops below 0.6. In the troposphere, the daily ACC drops below 0.6 typically at lead times
of 6-8 days in both hemispheres regardless of the season. In the stratosphere of both hemispheres, the pre-
dictability limit extends to 12 days or longer in DJF. Although the stratospheric predictability limit is shorter
in boreal summer, it is still longer than tropospheric predictive time scales. The only exception is BoM in
boreal summer, which shows comparable prediction skills for the stratosphere and the troposphere. This
is likely caused by an unrealistic stratosphere in this prediction system (Lim et al., 2019). There is notable
variation in the stratospheric prediction skill among the prediction systems, with those with little strato-
spheric variation such as BoM and CMA having reduced prediction skill as compared to the multimodel
average. In particular, the average of the high-top models (indicated by x) for DJF in the NH is 18 days,
while it is 13.6 days for the low-top models. While evaluating these results, it has to be kept in mind that the
hemispheres are not fully symmetric. The enhanced persistence of stratospheric and tropospheric variabil-
ity that can arise due to stratospheric events occurs during midwinter (December to February) and spring
(March to May) in the NH and during spring to early summer (October to December) for the SH (Lim et al.,
2018; Simpson et al., 2011). The SH stratosphere in DJF tends to be more predictable than its NH counter-
part in June-August (JJA), likely due to the later breakup of the polar vortex in the SH, leading to enhanced
predictability in the SH. On the other hand, the NH stratosphere in DJF is more predictable than its SH coun-
terpart in JJA. One possible reason for this is the stronger remote influences in the NH winter that affect
the stratosphere in winter. For the stratosphere, models also often show strongly enhanced predictability for
periods of weeks to months after extreme stratospheric events such as SSW events, which are absent in the
SH stratosphere in JJA.

It is further found that the stratospheric prediction skill is highly correlated with tropospheric prediction
skill. Figure 3 shows a scatter plot for the prediction skill shown in Figure 2 and Table 2. A significant
linear relationship across nine prediction systems is found, indicating that the models with a better pre-
diction skill in the stratosphere also exhibit a better tropospheric prediction skill. From this analysis, it is
however not possible to infer any causality. In particular, the available model data do not allow us to distin-
guish if the better tropospheric prediction of high-top models is indeed due to a better resolved stratosphere,
which might improve tropospheric predictability, or if prediction systems with a higher stratospheric res-
olution also exhibit better tropospheric predictions due to a better representation of processes unrelated to
the stratosphere or a combination of both.

While many prediction systems show appreciable skill in simulating large-scale NH winter stratospheric
anomalies, they do so with a small signal-to-noise ratio (the so-called ‘signal-to-noise paradox’ (Scaife &
Smith, 2018)). For the subseasonal prediction systems in the S2S database, there is evidence that the same
problem is also present, at least at lags beyond the limit of predictability in the troposphere. To diag-
nose signal-to-noise problems in the prediction systems, we examine the RPC diagnostic (section 2.2 and
equation 3) and its behavior as a function of lead time and pressure level for the NH winter stratosphere
(Figure 4). For all systems, the RPC starts close to 1.0, indicating, as expected, no initial signal-to-noise
problem, but the RPC then subsequently grows larger than 1.0, indicating underconfident forecasts and
a signal-to-noise issue. In the troposphere, the speed of this growth and the ultimate level of RPC vary
between the systems, but an onset at around 10-20 days is typical, leading to the RPC reaching values of
about 1.5-3.0. Note this is similar to the level found at the seasonal time scale, and the positive values indi-
cate underconfidence of the prediction systems (i.e., the prediction systems underestimate the predictability
of the observations). In the stratosphere, the RPC is found to grow more slowly than in the troposphere.
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Figure 2. ACC for geopotential height for the area (a-f) north of 30°N and (g-1) south of 30°S. For both hemispheres, the ACC is examined at 50(a-c, g-i) and
500 hPa (d-f, j-1) as a function of lead time (days). The results for JJA and DJF are plotted separately for the period common to all prediction systems. Different
colors denote individual prediction systems and the black bold line indicates the multimodel mean, which is computed by averaging the ACC values of all
prediction systems. “x” indicates high-top models.

This is consistent with, but not obviously a result of, the higher predictive skill in the stratosphere. Despite
the slower onset, the eventual values of the RPC attained in the stratosphere still tend to be large, in many
systems equaling (e.g., CMA and NCEP) or exceeding (e.g., BoM) those reached in the troposphere. Other
systems do not appear to be integrated sufficiently long for the signal-to-noise paradox to develop in the
stratosphere, for example, JMA.

Overall, the results show that all systems in the S2S project possess the signal-to-noise paradox as a feature
of their predictions. Note that the skill derived in this section is possibly dependent on the ensemble size of
the forecasting systems. This has, for example, been shown to yield a difference for the tropospheric winter
circulation on seasonal time scales (Athanasiadis et al., 2017).
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Table 2

Maximum Forecast Lead Time (i.e., Predictability Limit in Days) Determined by the Lead Time When the ACC Drops Below 0.6, Based on the Period 1999-2010 for

30-90°N and S

NH SH
Annual DJF JJA Annual DJF JJA
Model 50 hPa 500 hPa 50 hPa 500 hPa 50 hPa 500 hPa 50 hPa 500 hPa 50 hPa 500 hPa 50 hPa 500 hPa
BoM 10.1 6.0 12.2 6.8 5.3 5.1 8.8 5.7 9.4 5.8 7.6 5.7
CMA 10.9 5.2 11.7 6.0 7.4 4.7 9.0 3.9 11.1 4.4 7.2 3.7
ECCC 15.5 8.3 17.4 9.2 11.2 7.5 13.3 7.9 14.5 8.2 11.4 7.9
ECMWEFX 17.9 9.0 20.5 10.1 12.1 8.0 14.8 8.5 15.5 8.6 12.9 8.6
CNR-ISAC 12.0 6.9 12.9 7.3 9.1 6.6 10.7 6.7 11.6 6.8 9.4 6.6
IMAX 16.4 8.5 18.3 9.5 11.8 7.7 13.1 7.9 12.5 7.8 11.1 7.9
CNRM-Meteo* 14.2 7.3 16.4 8.0 10.2 6.6 13.4 7.1 15.0 7.2 11.5 7.2
NCEP* 14.3 7.8 17.6 8.7 8.4 7.0 12.3 7.2 13.7 7.3 10.4 7.2
UKMO* 15.1 8.1 17.2 9.0 11.0 7.4 12.8 7.5 13.8 7.5 11.4 7.5
MMM 140+24 75+12 160+29 83+13 96+22 67+11 120+19 69+13 13.0+19 71+12 103+18 69+14

Note. Values that fall below one standard deviation of the MMM are italicized; values that fall above one standard deviation of the MMM are bolded. x indicates

high-top models.

4. Predicting Stratospheric Events

We now turn to prediction on S2S time scales in the extratropical stratosphere. In particular, this section
analyzes the predictability of stratospheric extreme events that can subsequently influence surface climate
on S2S time scales, as discussed in Part 2 of this study.

Polar vortex events that influence surface climate include early and major midwinter SSW events, strong
vortex events, negative heat flux events, and final warming events. These extreme events, which are defined
in section 2.3, have different characteristics and potentially different predictability. For example, for SSW
events, anomalously large wave breaking is followed by strongly nonlinear wave-mean flow interaction that
can lead to quickly developing changes in the circulation. For strong vortex events, anomalously weak wave
breaking gives way to slow radiative processes that slowly drive the circulation towards radiative equilibrium
and hence a strong vortex. Negative heat flux events are associated with reflection (a reversible process),
which is different from wave breaking (an irreversible process), and hence, different predictability time
scales could be expected.

Here we compare the predictability of these events during a common period 1996-2010. Five prediction sys-
tems (CMA, ECCC, ECMWF, JMA, and UKMO) were used in the analysis of all types of events for the NH
to form the multimodel mean (black line in Figure 5); additional modeling systems (BoM, CNR-ISAC, and
CNRM-Meteo) were considered in some cases where data were available but are not included in the multi-
model mean. NCEP is not considered for this analysis as its period of hindcasts begins in 1999. Note that only
two ensemble members from UKMO were available for some initialization dates at the time of data acqui-
sition for this section. The data are first bias corrected by removing the model climatology (leaving the year
to be corrected out) and then adding back ERA-interim climatology. The bias correction had the strongest
influence on the detection of strong vortex and negative heat flux events at long leads (not shown). In par-
ticular, after bias correction, a smaller percentage of members across prediction systems detected strong
vortex events at long lead times (suggesting an overestimation of these events in the model climatology) and
a greater percentage of detected negative heat flux events at long lead times (suggesting an underestimation
of these events in model climatology, in agreement with results from the Coupled Model Intercomparison
Project Phase 5 models; Shaw et al., 2014, Fig. 5).

Figure 5 shows the percentage of ensemble members for each prediction system that detects the observed
event within +3 days of its actual date, for lead times averaged over 5-day periods prior to the event, which
occurs on Day 0. The bin length is chosen as a balance between having sufficient hindcasts in each bin
for each event while resolving the lead times before each event. The “false alarm rate” is the percentage of
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Figure 3. Scatter plot showing the predictability limit (the day for which the ACC crosses 0.6) of geopotential height
(a,b) north of 30°N and (c,d) south of 30°S for each model at 50 hPa versus 500 hPa for DJF (left) and JJA (right). The
average for all prediction systems is shown as the black square. A linear fit to the data points is shown as the solid line.
The correlation coefficient between the prediction skill at 50 hPa and 500 hPa is indicated in the upper-right corner of
each panel. “x” indicates high-top models.

members that predict an event to occur within a 1- to 30-day lead time when no event was observed. The
comparison of the hit rate with the false alarm rate in Figure 5 provides a measure of the predictive skill.

Below, we describe the differences in the predictability between the different types of polar vortex events.
The results should be prefaced by a number of caveats: (1) Not all prediction systems produce a hindcast
in each time bin for each event; (2) the number of ensemble members varies across prediction systems; (3)
the number of events is generally small, due to the short period covered by the hindcasts; (4) hindcast data
from different model versions of a given model are sometimes used; (5) the +3-day window is an arbitrary
choice which could matter for the accuracy in the detection of the events shown here; (6) the false alarm
rates are used as a baseline for skill, but the prediction systems could overestimate or underestimate these
events, even after bias correction; and (7) the percentage of ensemble members forecasting an event is only
one metric for the assessment of predictability and may be less reliable for models with a small number
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Figure 4. RPC (equation 3) for each prediction system as a function of lead time and height for DJF. Below 100 hPa,
the RPC is calculated for the zonal means of zonal wind at 60°N for the North Atlantic-European sector between 90°W
and 60°E. Above 100 hPa, the same diagnostic calculated for the entire latitude circle is used. Before calculating the
RPC, the data are aggregated into 7-day running means. These two aspects are necessary so that a reliable RPC can be
obtained. As the correlation r and the ensemble mean become small, the RPC becomes ill defined, resulting in very
noisy estimates. To avoid potentially misleading noise, the plot is masked where the correlation with observations is
less than 0.2. For full zonal means at daily resolution, the tropospheric correlation is always less than 0.2 after about

20 days, making it impossible to trace the growth of the RPC. “X” indicates high-top models.

of ensemble members at a given lead time. Other skill evaluation techniques (such as in Karpechko et al.
(2018)) return similar but not identical results.

Four early winter weak vortex events (one each in 1996, 2000, 2005, and 2009) are evaluated in the common
S2S period. Each of these instances is associated with at least one ensemble member from the S2S hindcasts
forecasting a major SSW in November, while other ensemble members miss the event entirely by forecasting
vortex intensification. We find that fewer than 50% of ensemble members accurately detect early warming
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Figure 5. The average across all events of the percentage of ensemble members as a function of lead time (days) that
detect the event within +3 days of the observed event for (a) early stratospheric warming events, (b) strong polar vortex
events, (c) SSW events, (d) negative heat flux events, and (e) final warming events. The black line shows the
multimodel mean based on five prediction systems (CMA, ECCC, ECMWF, JMA, and UKMO). Dotted lines show
where 25% and 75% of ensemble members detect the event. “x” marks the high-top models in the legend. Where a
prediction system was not used for the analysis or where there were not enough available ensemble members (at least
10 members were required for a given lead time range) is marked by an X in the color of the prediction system.
Patterned black bars give the “false alarm rate” (events that were predicted but not detected at the given lead times).

events prior to 6-10 days from the observed event, but almost all capture the event within 5 days (Figure 5a).
The multimodel mean rises above the false alarm rate at lags up to 25 days from the event, suggesting some
skill atlonger leads. Two low-top systems, BoM and CMA, have difficulty predicting early winter weak vortex
events even 5 days ahead of time, but two other low-top systems, ECCC and CNR-ISAC, perform similarly
to high-top models at most lead times (and even slightly better at long lead times).

Accurate detection of strong polar vortex events (Figure 5b) becomes highly probable (i.e., greater than
75%) up to 10 days before the event. Two exceptions are BoM and CMA. CMA has, on average, relatively
low probability (about 70%) of detection even at lead times less than 5 days before the events. BoM clearly
has problems with forecasting a strong polar vortex event, which is likely due to a lack of stratospheric
resolution in this model. JIMA indicates the most skill at 6- to 20-day leads, but overall, all systems (with the
exception of BoM and CMA) perform similarly. At lead times longer than 15 days, the forecasted probability
of detecting an event is between 5% and 60%, which typically exceeds the averaged 30-day lead time false
alarm rates. The enhanced detection of the event relative to the false alarm rate may indicate some skill even
at lead times of 30 days.
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Figure 6. Same as Figure 5c but for SSW events separated into (a) displacement and (b) split events. The black line
corresponds to the multimodel mean from Figure 5c; the blue/red lines indicate the multimodel mean for the displayed
events only. A student ¢ test of the differences between the detection of splits and displacements gives the following p
values for lead times from left to right: [0.6948, 0.0279, 0.7550, 0.357, 0.0925, 0.3740]. The false alarm rates shown by
the black patterned bars are for all SSW events, as in Figure 5c.

Previous studies (e.g., Gerber et al., 2009; Karpechko, 2018; Karpechko et al., 2018) have found predictability
limits for major midwinter SSWs of around 10-20 days. Here we find similar results for the S2S prediction
systems (Figure 5c¢). While the percentage of ensemble members detecting an event does exceed false alarm
rates at lead times of up to 15 days for most prediction systems, less than 10% of members detect SSW events
atlongleads (greater than 25 days), and predictions do not exceed 50% of members until lead times of 10 days
or less. Even at lead times of 5 days, a few of the prediction systems (CMA, BoM, and CNRM-Meteo) show
80% or less of members detecting the observed SSW. These results generally agree with previous estimates
of SSW deterministic predictability (Karpechko, 2018; Tripathi, Baldwin, et al., 2015) and indicate that pre-
dictability of such a major nonlinear transition can be limited by both the predictability of Rossby wave
propagation and their interaction with the stratospheric mean state (Plumb, 1981).

One more interesting implication of midwinter SSW events is the type of SSW that occurs. In a common
classification, there are two major types of midwinter SSW events: (1) “split” events, for which the polar vor-
tex splits into two separate vortices, and (2) “displacement” events, for which the polar vortex is distorted
and displaced off the pole (e.g., Charlton & Polvani, 2007). Taguchi (2018) provides an analysis of the pre-
dictability in the S2S hindcasts of five SSW events (December 1998, December 2001, January 2009, January
2013 in the NH, and September 2002 in the SH), showing that the vortex split SSWs (i.e., 2002, 2009, and
2013) were more difficult to forecast than the displacements (1998 and 2001). Here, we extend that analy-
sis by considering the predictability of 11 NH midwinter SSW events in ERA-Interim during the 1996-2010
period. A separate analysis separating split and displacement events for this larger number of events, that
is, six displacements and five split events (Figure 6), confirms the results from Taguchi (2018), that is, that
displacement events tend to be more predictable than split events, especially at lead times of 1-2 weeks,
though given the limited number of events this difference has limited statistical significance. While this
points to potentially different mechanisms in the precursors and causes of these events (e.g. Domeisen et al.,
2018; Esler & Matthewman, 2011; Martius et al., 2009; Matthewman & Esler, 2011), it will have to be further
investigated if this difference is indeed robust and what the reasons for these differences are.

Next, we consider the predictability of negative eddy heat flux events (Figure 5d). Mukougawa et al. (2017)
used an ensemble forecast model to show that the predictive lead time of a March 2007 negative heat flux
event was 1 week. Extending the analysis to multiple extreme negative stratospheric heat flux events, here
we find that the multimodel mean exhibits predictive skill at lead times of up to 30 days. The performance
again varies between prediction systems, with JMA and CNRM-Meteo showing the highest skill at long
leads and BOM and CMA showing weaker skill at most leads.

Finally, we find that the predictability of final warmings is higher for longer lead times compared to other
events (Figure 5e). However, the false alarm rate is also larger than for other events since the prediction

DOMEISEN ET AL.

12 of 17



~1
AGU

100

VANCING EAR
AND SPACE SCI

Journal of Geophysical Research: Atmospheres 10.1029/2019JD030920

100

80 [

40 |

200 H m I-I! m 1
ot 7 7 Wes 7 77

30 t0-26 -25t0-21 -20t0-16 -15to-11 -10 to -6
Lead time (days)

60 [

Percent ensemble members [%]

| CMA ECCC BOM [ CNR-ISAC
I ECMWF* [l jMA* Bl CNRM—Meteo*

Figure 7. Same as Figure 5e but for final warming events in the Southern Hemisphere. The false alarm rates are shown
by the black patterned bars. The black line shows the multimodel average over all prediction systems displayed here.

systems climatologically must predict a final warming every year. The detection rate rises above the false
alarm rate at lead times of up to 25 days. Note also that this particular period (1996-2010) comprises 10
“late” (i.e., after 15 April) final warmings and only four “early” (i.e., before 15 April) final warmings. This is
relevant since late final warmings are more predictable at longer lead times than early, dynamically driven
final warmings, which show predictability more similar to midwinter SSW events (Butler et al., 2019).

We now perform the same analysis for the SH to obtain the model skill for predicting the timing of the
final stratospheric warming events in the SH using the same approach as for the NH discussed above. In
the SH, the maximum variability of the polar vortex is found in spring in the upper stratosphere when
the stratospheric polar night jet seasonally weakens and becomes more susceptible to wave forcing from
the troposphere (Byrne & Shepherd, 2018; Graversen & Christiansen, 2003; Kuroda & Kodera, 1998; Lim
et al., 2018; Randel, 1988; Sheshadri & Plumb, 2016; Shiotani & Hirota, 1985; Thompson & Wallace, 2000).
Anomalous weakening and warming (strengthening and cooling) of the SH spring polar vortex generally
leads to an earlier (later) final warming event (Byrne & Shepherd, 2018; Shiotani et al., 1993).

Figure 7 assesses the skill of the subseasonal forecasting systems in predicting final warming events in the
SH. All models show skill (relative to the false alarm rate at these leads, given in black bars), even out to
lead times of 30 days. As for the NH, the high-top models tend to show the highest skill, though it is notable
that several low-top models such as CNR-ISAC and ECCC show significant skill for all lead times. In com-
parison to the NH final warmings, the false alarm rates tend to be smaller in the SH, and predictability
(the percentage of ensemble members predicting the correct date in comparison to the false alarm rate)
can be found for longer lead times: While in the NH, the prediction rate falls below the false alarm rate
as early as at lead times of 16 to 20 days before the event for several models, this is not the case for any
model in the SH out to 30 days before the final warming event. The multimodel mean predictability is sim-
ilar to the NH, though it decays faster for lead times of 6 to 10 days, while it remains high for these lead
times in the NH. Overall, this indicates a higher predictability of the final warming events at short lead
times for the NH but higher predictability for long lead times of 3-4 weeks for the SH. The predictabil-
ity at longer lead times in the SH might arise due to the smaller variability in the timing of the SH final
warming compared to the NH, despite the observed trend in the timing of the final warming due to ozone
variability and trends (Black & McDaniel, 2007; Sheshadri & Plumb, 2016; Thompson et al., 2011). Given
that almost all models use noninteractive or climatological ozone, this demonstrated forecast skill to predict
the timing of the SH final warming indicates that dynamical processes are the dominant drivers of pre-
dictability for the final warming, but there is scope for further improvement of forecast skill by including
prognostic ozone (e.g. Seviour et al., 2014).

While it is difficult to directly compare the predictability of different types of events, given the differences in
the number of events and their time of occurrence in each case, in general, we can conclude the following:

(a) Models with poorer stratospheric resolution or a low model top such as, for example, CMA and BoM,
show a weaker performance in predicting stratospheric events. Note that BoM's top level below the model lid
is at 10 hPa, so using metrics based on 10 hPa, output may not be physically meaningful for this prediction
system because of strong damping of wave-driven processes by the deep sponge layer. However, ECCC,
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despite its low model top (see Figure 1), has a predictability of stratospheric events that is comparable to
models with a well-resolved stratosphere.

(b) The probability of accurately detecting the observed event increases as lead time decreases and becomes
large (greater than 75%) at lead times of up to 10 days before the events. The probability of accurately detect-
ing the observed event has less dependence on lead time between 30 and 15 days before the event. For these
lead times, forecast probability is between 5% and 50%, with some types of events exhibiting longer-lead
predictability than others. Strong vortex events and final warmings appear somewhat more predictable at
longer leads than SSW events, which hints at the different mechanisms causing these events. The lower
predictability of SSW events is likely linked to their more dynamical and wave-driven nature, while more
gradual and/or radiatively driven processes, for example, strong vortex or late final warming events, tend to
be more predictable (Butler et al., 2019). While we here provide a first look at the overall predictability of
these events in the S2S database, more work will have to be done to fully understand the factors that drive
some events to be more predictable than others.

5. Discussion and Outlook

In this study, we have examined the predictability in the stratosphere using the subseasonal prediction sys-
tems from the S2S database (Vitart et al., 2017). These systems provide important operational guidance for
prediction on S2S time scales, so it is important to understand the processes that give rise to predictabil-
ity, including those that involve the stratosphere. This study focuses on evaluating the predictability of the
stratosphere itself, as extreme events in the stratosphere can have significant impacts on the predictability
of surface weather, which is investigated in Part 2 of this study (Domeisen et al., 2019).

Overall, the stratosphere exhibits longer predictability time scales as compared to the troposphere, as exem-
plified by the slower decrease in the prediction skill in comparison to the troposphere. For most models,
predictability beyond 2 weeks is typical in the stratosphere. In addition, the stratosphere exhibits a slower
growth of the signal-to-noise problem as compared to the troposphere. The stratosphere also exhibits a range
of extreme events; however, stratospheric extreme events themselves tend not to be predictable beyond deter-
ministic time scales and exhibit similar predictability to tropospheric weather. This is in particular the case
for SSW events, which are predicted by up to 50% of the ensemble members in all models out to only about
a week. Events that are less abrupt in nature, such as late final warming events and strong vortex events,
tend to be more predictable, with up to 50% of the ensemble members predicting the occurrence of the event
2 weeks in advance (see also: Butler et al., 2019). Final warming events in the SH tend to be more predictable
than those in the NH.

Due to the limited representation of ozone on the S2S models, it is not possible to assess the role of ozone
on predictability using the current set of models. Given the possible influence of ozone on the dynamical
evolution of the stratosphere in both hemispheres (Ivy et al., 2016, 2017; Keeble et al., 2014; Rieder et al.,
2019; Seviour et al., 2014; Solomon et al., 2014), an improved representation of stratospheric ozone might
further increase the predictability of the stratosphere on subseasonal and longer time scales. Significant
differences can be found in the predictability of stratospheric events between high-top and low-top models,
with the high-top models exhibiting significantly higher predictability of stratospheric extreme events as
compared to low-top models. Note that here, high top refers to models with both a high model top and an
improved stratospheric resolution.

It should be noted that the estimates of skill in the prediction of various parameters in this study are depen-
dent on the frequency and ensemble size of the hindcasts in the S2S database. Ensemble size has been
shown to have a marked influence on the skill of ensemble forecasting of the midlatitude winter circulation
(e.g. Athanasiadis et al., 2017), with larger ensembles tending to be more skillful. Operational requirements
within the centers contributing to the S2S data set frequently mean that hindcast ensemble sizes are consid-
erably smaller than those of operational forecasts. As a result, when the same systems are used to produce
forecasts in real time, they may have levels of skill that exceed those shown here. It might be reasonable to
assume, therefore, that the skill shown here is a lower limit for the skill of real-time operational forecasts. In
a similar way, our results cannot be used to infer the relative performance of the underlying models within
the prediction systems, as any differences in skill may be a result of differences in their ensemble size and
initialization strategy rather than the model itself.
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Overall, this study shows a clear dependence of S2S prediction skill on the season and the type of extreme
event in the stratosphere for all models. In addition, a clear difference in predictability between high-top
and low-top models can be observed, with a significantly better prediction of stratospheric extreme events in
high-top models. While this study provides an overview of the prediction skill available in the S2S database,
further detailed studies of S2S prediction skill for the stratosphere will be necessary in order to assess
the full range of stratospheric predictability, especially with further stratospheric data becoming available
in future versions of the S2S database.
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